
  

STO-MP-IST-115 21 - 1 

 

 

Goals and Challenges of an Intelligent  

Discovery Service for Architecture Repositories 

Michael Gerz, Francesco Bacchelli 
Fraunhofer FKIE 

Information Technology for Command & Control (ITF) 

Fraunhoferstraße 20 

53343 Wachtberg-Werthhoven  

GERMANY 

michael.gerz@fkie.fraunhofer.de 

francesco.bacchelli@fkie.fraunhofer.de 

ABSTRACT  

Complex organisations such as the national armed forces run many studies, projects, and programmes that 

produce an increasing number of architecture descriptions as formal models. In order to avoid redundant 

efforts, it is important to make all models visible and accessible to interested parties. 

A central architecture repository, in which all architecture models are stored, is a first step to publish 

existing products. However, the repository should be complemented by an intelligent discovery service that 

allows users to run a query for specific details in the architecture models stored in the repository. For 

illustration, a user might want to retrieve all information exchange relationships on the brigade level or to 

get an overview of the combat net radios deployed in national vehicles. Since the search results may come 

from many different models, the outcome must be presented in a way that allows the user to identify 

potentially relevant architecture models for further consultation. 

In this paper, we present the motivation behind an intelligent discovery service for formal architecture 

models and describe classes of queries that users may want to run. We show that an architecture repository 

can deliver better results than when you query all architecture models individually. Thereafter, we give an 

overview of the challenges that you have to face when implementing such a discovery service. We also 

discuss technologies that can be adopted to implement such a service and to improve the quality of the query 

results. Finally, a system architecture for a discovery service is proposed. 

1.0 INTRODUCTION 

For any given enterprise, there is not just a single coherent architecture model that describes the enterprise in 

its entirety. Instead, there is a variety of different architectures ranging in the level of detail, the timeframe 

for validity etc. The NATO Architecture Framework (NAF), for instance, considers this by its NATO All 

View 1 (NAV-1), in which you have to define the scope and constraints of the architecture. 

Complex organisations such as the national armed forces run many studies, projects, and programmes that 

produce a continuously growing number of architecture descriptions as formal models. In order to avoid 

redundant efforts in such a decentralized organisation, it is important to make all models visible and 

accessible to interested parties.  

A first step is to set up a central architecture repository, in which all architecture models are stored. To 

facilitate initial retrieval capabilities, architecture models could be tagged with structured metadata that are 

extracted from the NAV-1. However, with this simplistic approach, it is still up to the user to identify and 

analyse potentially relevant architectures based on a limited set of metadata and textual descriptions.  

  



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories      

21 - 2 STO-MP-IST-115 

 

That is why the repository should be complemented by an intelligent discovery service that allows users to 

run a query for specific details in the architecture models stored in the repository. Unlike Internet search 

services, such a discovery service does not operate on free-text but on formal models. Therefore, the output 

can also be presented in a structured manner, for instance, in tabular format, in a tree format or, better yet, as 

a graph representation. Since the search results may come from many different models, the outcome must be 

presented in a way that allows the user to identify potentially relevant architecture models for further 

consultation. For each result, the discovery service should also keep track of what led the service to provide 

it, making the whole process more understandable to the user. This way, the user can play an active role in 

his/her search by adjusting the search terms. 

2.0 ARCHITECTURES 

IEEE 1471 states that an architecture is “the fundamental organization of a system embodied in its 

components, their relationships to each other and to the environment, and the principles guiding its design 

and evolution”. In [1], it is argued that, as a consequence of that definition, an architecture and an 

architectural description are not the same thing, since the first one is a concept of a system (in a wide sense) 

while the second one is an artefact embodying some fundamental fact about the first one. 

In this paper, for simplicity sake, we use the word “architecture” to describe both and depending on the 

context it will be clear which one is being referred to. The definition from IEEE 1471 also tells us what we 

are supposed to find in those architectures (architectural descriptions, of course): the components of a system 

and their relations. However, a significant distinction within those “components” is the one between classes 

and instances. Therefore, for the rest of this paper, we will consider that an architecture contains (at its lower 

level) classes, instances and relations. 

The crucial point with regard to our goal is how classes, instances and relations will be represented in the 

descriptions. Since many years, for instance, UML has been a widespread standard for architectural 

descriptions but we cannot expect all architectures we want to deal with to be described in UML. In addition 

to that, the recent flourishing of architectural frameworks (such as MODAF and DoDAF) and other similar 

initiatives (like the Unified Profile for DoDAF and MODAF (UPDM) or the MODAF Ontological Data 

Exchange Mechanism (MODEM)) propose different views on architectural descriptions. The NATO 

Architecture Framework alone provides 50 different views (and sub-views) covering, among others, 

operational and technical aspects of an architecture. Accordingly, there are many types of information that a 

discovery service user may be interested in. Last but not least, all these standards provide support to the 

architects, not really restraining their expressive freedom. Therefore, on top of all these different standards, 

there is a user-related (or community-related) expressivity that must be taken into account. 

The approach hereby presented aims at building a repository where such diversity is made transparent for an 

end-user searching the repository for architectural descriptions and their components. 

3.0 USER QUERIES 

The kind of queries that an end-user can submit will depend on the needs and knowledge that the user has. 

What is relevant, to best answer the user query, is how that query can be represented in terms of what is 

inside an architecture: classes, instances and relations. Especially the Relations of the repository play a 

pivotal role, in particular, with their properties: reflexive, symmetrical and transitive Relations, in fact, allow 

making important assumptions when examining the repository to satisfy user query. Last but not least, the 

fact that the user is querying a whole repository and not just individual architectural descriptions can be 

leveraged to provide better results. 

  



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories 

STO-MP-IST-115 21 - 3 

 

3.1 Types of User Queries 

To explain the importance that the representation of queries has in the whole process being described hereby, 

let us consider the following queries that could be submitted by an end-user: 

• Find all the tanks that can run at more than 40 km/h; 

• Find all the radios with ´80´ in their name; 

• With whom does RC North in Afghanistan exchange information? 

• With which tanks does RC North in Afghanistan exchange information? 

• Find all the tanks with more than two radios. 

From a technical perspective, all the queries the user can submit can be reduced to two main types and their 

composition.  

The first type is the case when the end-user is searching directly for one “thing”, be it a class, an instance, or 

a relation, basing the search over some attributes it may have; the first two queries above fall into this 

category. 

The second type is the following: considering a triple (X, Y, Z), where X and Z are classes or instances (the 

user should be able to choose this when submitting the query) and Y is a relation between the two.  

 

Figure 1: Generic Triple (X, Y, Z) 

The end-user fixes two of them by applying a filter, as in the first type, and the system finds all the possible 

occurrences for the third one. The set of queries of this kind is extremely vast. One example is “With whom 

does RC North in Afghanistan exchange information?” In this example, X = “RC North in Afghanistan”, Y = 

“Information Exchange”, and Z is the variable. 

 

Figure 2: Sample Query 

Then, conditions of this kind can be composed in order to fulfil more complicated queries. For instance, 

consider a query like “With which tanks does RC North in Afghanistan exchange information?”; this is 

actually the combination of two conditions: in the first one, X1 is the variable, Y1 = “is-a” and Z1 = “Class 

Tank”; in the second one, X2 = “RC North in Afghanistan”, Y2 = “information exchange” and Z2 includes all 

the X1 matching the first condition. 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories      

21 - 4 STO-MP-IST-115 

 

 

Figure 3: More Complex Sample Query 

A further step is then represented by filtering results after the requested triples have been found. So, for 

instance a query like “Find all the tanks with more than two radios”, can be seen as further composition of 

the above types where, in addition to the fact that X and Z are the result of some previous filtering, there are 

also conditions on the relation Y (“is part of”, in this case), concerning its number of occurrences. 

3.2 Navigating Relations 

Certain queries imply that the result has to be obtained by exploring the graph of relations beyond the first 

step. Consider the example of the tank containing the radio. A first way of tackling the query is: if there is a 

relation “is part of” between an object that “is a” tank and an object that “is a” radio then return the tank, 

otherwise discard it. But then, what about a case where the radio is embedded into a combat system? The 

architect may have created three objects (the tank, the combat system, and the radio) and have established 

two “is part of” relations: one between the tank and the system and another one between the system and the 

radio. 

In this example, if the user wants the embedded radio to be considered a radio, then the system must know 

that “is part of” is a transitive relation and deduce that if the tank contains the combat system and the combat 

system contains the radio, then the tank contains the radio. 

In order to show the same problem with another relation, let us consider a query similar to that of Figure 3: 

“Find all the vehicles with more than two radios”. The user will assume that tanks are vehicles and if the 

Leopard contained two radios the user would want it among the results of this query. Now, if an architecture 

contains a Leopard instance and a Tank class, there will be an “is a” relation between the two. But then, it 

will be the class Tank to have an “is a” relation with class Vehicle; therefore, to fulfil the user request, the 

system must know that “is a” is a transitive relation, and that the Leopard is a vehicle as well. 

3.3 Beyond Querying a Single Architecture Model 

As mentioned in chapter 1.0, each architecture shall encompass just the set of items of its interest, to the level 

of detail that was needed at the time of creation. For instance, an architecture describing reconnaissance 

missions with UAVs may include a detailed description of the Predator (stating, for instance, that it is 

equipped with an infrared sensor), but may omit the fact the Predator is a UAV, because it is taken for 

granted within the context. So if the end-user wants to query the repository for “All UAVs equipped with 

infrared sensor” the system will not be able to return the Predator instances from that architecture.  

However, if another architecture existed in the repository, for instance a synthetic list of vehicles, this 

architecture could mention that among the UAVs there is the Predator, even though it may not describe its 

equipment. In such a case, when the system derives all the conditions necessary to implement the user query 

(as described in chapter 3.1), it should first check what items are UAVs (in the second architecture) and then 

which of the selected items have an infrared sensor (the information available in the first architecture). 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories 

STO-MP-IST-115 21 - 5 

 

4.0 CHALLENGES 

Developing an intelligent discovery service is an ambitious task. There are several challenges that must be 

addressed to provide satisfactory results. 

4.1 Formats and Languages 

Architectural descriptions are available in many different formats and languages nowadays, also thanks to 

the plurality of software tools suitable for architectural design. The end products of the design process may 

range from self-designed Excel sheets (e.g., listing operational nodes and their information exchange 

relationships) to complex architectures developed with modelling tools such as ARIS, IBM System 

Architect, or Sparx Enterprise Architect. Also, the architectural descriptions can be contained in a single file 

or stored in a DBMS, or they can be exchanged via interchange formats like XMI and there are subtle 

differences in the output created by the different tools.  

The repository must not be burdened by all these differences and store all the information contained in those 

descriptions in just one format, which can effectively be navigated to satisfy user queries. 

4.2  Meta Models 

The different modelling tools we mentioned previously are generally customized to meet the requirements of 

a given architecture framework (such as NAF) and/or national directives. In case of UML-based modelling, 

this tailoring can be achieved by UML profiles that specialise the semantics of UML. A popular standardized 

UML profile is OMG’s Unified Profile for DoDAF and MODAF (UPDM). 

With regard to a discovery service, the main problem is that NAF concepts like operational node or 

information element are represented differently in the different architecture models. In order to provide an 

overarching discovery service, it is necessary to map the various meta-models onto a common, single meta-

model that is the basis for the search engine. This mapping will be complex and possibly some information is 

lost in the process.  

4.3  Architecture Objectives 

Architectures are modelled with different objectives, at different times, by different people. This is reflected 

in the different types of architectures (overarching vs. reference vs. target vs. baseline architecture), their 

scopes, their granularity and their level of abstraction (see above example about UAVs).  

Furthermore, an architecture may describe the current processes and systems, a projected state in the near or 

far future, or even multiple states as a migration path from the current to the planned situation.  

The result of this diversity will be a set of architectural descriptions where the same concepts or items are 

represented differently, and partially. 

4.4  Naming and Design Rules 

Due to the lack of an all-encompassing supervision, architecture models are partly based on individual 

conventions. For instance, depending on the point of view of the modeller, a video stream or intelligence 

information can be considered as (operational) information elements, even though both terms are on different 

levels of abstraction.  

In addition, there may be variations among the names: 

• Full names vs. Acronyms? 

• Composite terms with vs. without hyphen? (this is a problem in German, in particular) 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories      

21 - 6 STO-MP-IST-115 

 

• Noun vs. verbs – “Report IED” vs. “IED Report”? 

• English terms vs. terms in mother language? 

4.5  End-User Competence 

The end-user querying the repository can be equipped with very diverse levels of competence and 

experience. There may be a high-level decision-maker, who ignores many details well-known to architects 

but there may also be an architect, querying a repository full of architectures built by others, at different 

times, for goals other than his own. In both cases, querying can be more successful (and satisfactory) if the 

user has the possibility to receive feedback by the system with respect to the query submitted. 

4.6  Presentation of Results 

Another important factor concerning the interaction of the discovery service with the human is related to the 

presentation of the obtained results. The very first step would be a textual list with a reference to the 

architecture and the name(s) of the elements found. 

Two important elements would be missing in such a presentation: 1) a way to further expand/explore the 

results and 2) a clear evidence of why the result was returned. Both elements are important for the user to 

have a better comprehension of the query that took place and play an active role in improving the query 

submitted. 

5.0  PROPOSED APPROACH 

The approach that this paper will follow tries to tackle the problems described above: differences in format, 

differences in models, differences in architecture perspective and naming, differences in end-user capabilities 

to perform queries and support to the querying process. 

5.1 A Unified Repository Format 

The first step is the identification of a unifying format. It must be 

• suitable for representing classes, instances and relations, and their attributes and properties, 

• expressive enough to represent all those items with sufficient conciseness, 

• simple enough to be manageable. 

It must have 

• mature software libraries and software tools that deal with it, 

• querying languages to search the repository. 

The language that we identified that satisfies all these requirement is OWL2 [2], where classes are called 

classes, instances are called individuals and relations are called properties. In particular, since this choice is 

not only for modelling but also (and mostly) for reasoning, we will restrain to OWL2 DL. Among the most 

relevant characteristics supported natively, the following ones are worth mentioning: 

• Classes and Instances; 

• Class Hierarchies; 

• Property Hierarchies; 

• “Domain” and “Range” Restrictions of a Property, i.e., the restriction over the classes that the 

endpoint of a relation can assume; 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories 

STO-MP-IST-115 21 - 7 

 

• Equality of Individuals; 

• Property Restrictions and Property Cardinality Restrictions; 

• Property Characteristics (symmetric, reflexive, transitive); 

• Property Chains, i.e., the composition of more Relations in a single Relation; 

The general idea is that every architectural description to be included in the repository will be transformed 

into one ontology. Once this ontology enters the repository, it will be integrated in just one big piece of 

knowledge, as described in chapter 5.3. 

To transform an architecture model in an ontology, we will need a Mediator, i.e., a program capable of 

reading a specific file format of one of the modelling tools commonly available. It will read the architecture 

file and produce an ontology (a .OWL file). It will translate Instances (be them represented by objects or 

elements, depending on the specific source tool) into instances, Relations (be them links or connectors, 

depending on the specific source tool) into properties and classes… into classes.  

Of course, it will not be a 1-to-1 translation, but it will depend on the specific convention used by the source 

format, e.g., in a format there could be just elements and connectors; then, a class will be a particular type of 

element and the “is a” relationship, coming from an element of that class, will be a special connector. The 

mediator will have to catch all these peculiar representations and create the right OWL components, e.g., a 

class, an individual and ClassAssertion. 

5.2  Modelling the Repository 

The native structures of OWL do not have the same expressiveness as modelling languages (like UML) and 

higher-level meta models (like UPDM). However, the higher-level, missing concepts can effectively be 

represented in OWL. Therefore, a complete structure of new classes, instances, and properties (in the OWL 

way) will have to be created in the repository order to express directly concepts like “stereotype”, “diagram”, 

“capability”. Basically, all the concepts introduced by models and meta-models commonly used for 

architectural descriptions should be created in the repository ontology. It is beyond the scope of this paper to 

define precisely such ontological model. 

Following the existence of such an ontological model, it is clear that the work of the Mediator introduced in 

the previous section cannot be restrained to the mere creation of OWL classes, instances, and properties. 

The Mediator (actually, all the mediators for all the different formats that have to be imported into the 

repository) will have to make use of that target ontological model.  

5.3 Harmonizing the Repository   

Through the job of the mediator, we have abstracted the repository from the specific format used in the 

architectural description. However, we have still to deal with the differences in architecture perspective and 

naming and design rules. To overcome that, it will be necessary to perform some reasoning over the 

repository, aimed at discovering equivalent items belonging to different architectures, and marking them as 

such. Therefore, a Reasoner should be in charge of Repository Harmonization. 

The starting point could be a similarity analysis of terms/identifiers and methods adopted from 

computational linguistics. The most simplistic approach is to incorporate domain-specific dictionaries, a 

thesaurus, and a simple word translator. However, due to potential differences in naming (see 4.4), it is not 

possible to equate elements from different architectures purely based on their names. So, when evaluating 

and visualizing architecture information, it is necessary to take the original context into account. For 

instance, in a UML model such context could be given by the package structure. 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories      

21 - 8 STO-MP-IST-115 

 

Basically, all that is needed is a process of ontology alignment. This problem has been covered abundantly in 

literature for the last 10 years and more. It is beyond the scope of this paper to choose the ontology alignment 

approach most suitable to an architecture discovery service. 

To further support repository harmonization, the repository should be complemented by a set of concepts 

called “Domain Knowledge”. Basically, this means a further (and potentially very vast) set of classes, 

instances, and properties (in the OWL way) will be added to the repository (at “initialization time”) to aid 

the alignment process (instead of aligning two architectures, it could be easier to align each of them to the 

Domain Knowledge) or to fill the gaps that the Reasoner could find when trying to align two concepts. 

The result of the harmonization of the newly imported architecture within the repository will be a single 

ontology, representing the union of the previous repository and new architecture, plus the established 

alignments. 

5.4 Assisted Querying 

As stated in chapter 4.5, the effectiveness of a query cannot be left to the improvisation of the end-user. The 

discovery service has to support the process of querying with adequate tools. In chapter 3.1, we have shown 

how queries possibly submitted by an end-user can be translated into one or many conditions to be checked 

against the repository. We do not have natural language interpretation in mind or anything like that. Quite the 

opposite: the idea is that a dedicated User Interface will support the end-user during the whole search 

process, as we will describe now. 

Let us suppose the interest of the end-user is to find “All the addressees of orders issued by Regional 

Command North in Afghanistan”. First of all, how would “Regional Command North in Afghanistan” be 

called in the repository? “RCN AFG”? “RC North”? In addition, it may have been called differently by 

different architects. So the first step would be to identify the one (or better, the set of) “Regional Command 

North in Afghanistan”(s) that match the user interest. If the repository harmonization described in chapter 5.3 

has successfully taken place, find one of them should mean finding all the equivalent ones as well. The User 

Interface should then represent this first set of results to the end-user. 

The next step would be determining what the relation used to specify orders issuance would be. In that 

respect, there are different ways to help the user. Firstly, the system could present a list of all the relations 

coming out of the items found in the previous step but that could lead to an excess of information. Another 

path could be walked if the Capability of receiving orders is defined somewhere; then the set of possible 

relations of the Regional Command could be restricted to those going towards other classes/instances 

capable of receiving orders. 

In this respect, the User Interface will receive input from the user and create the queries. Also, it will 

incorporate in those queries the possible options available to the user (such as “Search classes only” or 

“Search classes and instances”), translating them appropriately. 

Submitting the queries, getting the result set, and applying further reasoning is the task of the Search 

Engine. In particular, in the example above (where the user first finds “Region Command North” and then 

imposes that the other end point must be capable of receiving orders) there will be more interactions between 

the User Interface and the Search Engine, in order to assist the user step-by-step. Another task of the Search 

Engine is the navigation of relations, as described in chapter 3.2. The decision of following transitive 

relations, for instance, only up to the n-th level, can make the difference between finding too many and too 

few results. 

  



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories 

STO-MP-IST-115 21 - 9 

 

5.5 Graphical Representation of Results 

Another major role of the User Interface is an effective presentation of the results to the user. Considering 

the requirements stated in chapter 4.6, the solution hereby proposed is composed by structured, text-based 

list and a graphical representation. 

The structured, text-based list could actually be an expandable tree, where a node is a Class, an Instance or a 

Relation and expanding its sub-tree allows seeing other elements that have to do with that result. For 

instance, if it is a class, there could be the sub-tree of its instances or the sub-tree of its sub-classes; it may 

even make sense to have the result not as the root of a tree but at a certain level to show also its super class 

(or super classes, where applicable). As another example, if the result is an instance, than we could have the 

sub-tree of all the other Instances related to it, and on the way up the tree (as in the example before) we could 

have the class this instance belongs to and (further on) its super-classes. An additional plus would be the 

possibility of selecting another node and have the system load the tree for this new node, so the user can 

continue his virtually seamless exploration of the repository. 

The graphical counterpart would essentially offer the same possibilities, i.e. it would show other elements up 

or down certain possible lines, such as super-class/sub-class or via relations. And, just as the text-based part, 

once a new element is selected, the other elements around are fetched according to this new centrality. 

All these visual updates are obtained by continuous interactions between the User Interface and the Search 

Engine. In order to avoid waste of search and communication time, the data related to sub-trees to be opened 

or new elements to be focused on will be requested only as a consequence of a user request. 

6.0  SYSTEM ARCHITECTURE FOR A DISCOVERY SERVICE 

A system architecture implementing the approach described in chapter 5 is depicted in Figure 4.  

• The Mediators (one for each different input format) translate from specific format to the ontological 

Architecture Warehouse.  

• The Reasoner performs ontology alignment and all the other matching procedures aimed at 

harmonizing the repository. 

• The Domain Knowledge (de facto in the Warehouse but conceptually separated) helps the 

Harmonization process. 

• The User Interface supports the end-user by receiving input and providing output, possibly with the 

purpose of receiving more focused input for further search. It translates all the input provided by the 

end-user in queries for the Search Engine. 

• The Search Engine submits the queries and processes the result for the User Interface. 

 



Goals and Challenges of an Intelligent 
Discovery Service for Architecture Repositories      

21 - 10 STO-MP-IST-115 

 

 

 

Figure 4: Architecture for an Intelligent Discovery Service 

 

7.0  REFERENCES 

[1] Mark W. Maier, David Emery, Rich Hilliard: “Software Architecture: Introducing IEEE Standard 

1471”, IEEE Computer volume 34, Issue 4, pages 107-109. 

[2] http://www.w3.org/TR/owl2-primer, OWL 2 Web Ontology Language Primer (Second Edition) 

 

 

 

  

 


